首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53747篇
  免费   4266篇
  国内免费   2994篇
  2024年   34篇
  2023年   628篇
  2022年   770篇
  2021年   1248篇
  2020年   1237篇
  2019年   1615篇
  2018年   1621篇
  2017年   1152篇
  2016年   1328篇
  2015年   1911篇
  2014年   2801篇
  2013年   3807篇
  2012年   2046篇
  2011年   2848篇
  2010年   2274篇
  2009年   2882篇
  2008年   3090篇
  2007年   3148篇
  2006年   2868篇
  2005年   2829篇
  2004年   2487篇
  2003年   2220篇
  2002年   2059篇
  2001年   1359篇
  2000年   1149篇
  1999年   1211篇
  1998年   1111篇
  1997年   901篇
  1996年   726篇
  1995年   939篇
  1994年   865篇
  1993年   773篇
  1992年   680篇
  1991年   487篇
  1990年   395篇
  1989年   366篇
  1988年   383篇
  1987年   338篇
  1986年   281篇
  1985年   331篇
  1984年   449篇
  1983年   300篇
  1982年   298篇
  1981年   185篇
  1980年   173篇
  1979年   146篇
  1978年   85篇
  1977年   47篇
  1976年   43篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The effects of amino acid supply and insulin infusion on skin protein kinetics (fractional synthesis rate (FSR), fractional breakdown rate (FBR), and net balance (NB)) in pigs were investigated. Four-month-old pigs were divided into four groups as follows: control, insulin (INS), amino acid (AA), and INS + AA groups based on the nutritional and hormonal conditions. l-[ring-13C6]Phenylalanine was infused. FBR was estimated from the enrichment ratio of arterial phenylalanine to intracellular free phenylalanine. Plasma INS was increased (p < 0.05) in the INS and INS + AA groups. Plasma glucose was maintained by infusion of glucose in the groups receiving INS. The interventions did not change the NB of skin protein. However, the interventions affected the FSR and FBR differently. An infusion of INS significantly increased both FSR and FBR, although AA infusion did not. When an AA infusion was added to the infusion of insulin (INS + AA group), FSR and FBR were both lower when compared with the INS group. Our data demonstrate that in anesthetized pigs INS infusion did not exert an anabolic effect, but rather it increased AA cycling into and out of skin protein. Because co-infusion of AAs with INS ameliorated this effect, it is likely that the increased AA cycling during INS infusion was related to AA supply. Although protein kinetics were affected by both INS and AAs, none of the interventions affected the skin protein deposition. Thus, skin protein content is closely regulated under normal circumstances and is not subject to transient changes in AAs or hormonal concentrations.  相似文献   
992.
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser46 in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser46, and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.  相似文献   
993.
994.
Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.  相似文献   
995.
G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5′-adenylyl β,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.  相似文献   
996.
997.
The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.  相似文献   
998.
999.
Regulated proteolysis efficiently and rapidly adapts the bacterial proteome to changing environmental conditions. Many protease substrates contain recognition motifs, so-called degrons, that direct them to the appropriate protease. Here we describe an entirely new degron identified in the cytoplasmic N-terminal end of the membrane-anchored protein YfgM of Escherichia coli. YfgM is stable during exponential growth and degraded in stationary phase by the essential FtsH protease. The alarmone (p)ppGpp, but not the previously described YfgM interactors RcsB and PpiD, influence YfgM degradation. By scanning mutagenesis, we define individual amino acids responsible for turnover of YfgM and find that the degron does not at all comply with the known N-end rule pathway. The YfgM degron is a distinct module that facilitates FtsH-mediated degradation when fused to the N terminus of another monotopic membrane protein but not to that of a cytoplasmic protein. Several lines of evidence suggest that stress-induced degradation of YfgM relieves the response regulator RcsB and thereby permits cellular protection by the Rcs phosphorelay system. On the basis of these and other results in the literature, we propose a model for how the membrane-spanning YfgM protein serves as connector between the stress responses in the periplasm and cytoplasm.  相似文献   
1000.
Matrix metalloproteinase-8 (MMP8) has been shown to influence various cellular functions. As monocytes and macrophages (Mφ) express MMP8, we investigated if MMP8 played a role in macrophage differentiation and polarization. MMP8 expression was significantly increased during monocyte differentiation into Mφ. Monocyte-derived Mφ from MMP8-deficient mice expressed higher levels of M1-Mφ markers but lower levels of M2-Mφ markers than monocyte-derived Mφ from wild-type mice. Although Mφ from either MMP8-deficient or wild-type mice were inducible by interferon-γ into M1-Mφ, only wild-type Mφ but not MMP8-deficient Mφ could be induced into M2-Mφ by interleukin-4. However, MMP8-deficient Mφ exposed to conditioned culture media of wild-type Mφ developed a M2-Mφ phenotype. Compared with conditioned culture media of wild-type Mφ, conditioned culture media of MMP8-deficient Mφ contained a lower concentration of active transforming growth factor-β (TGF-β), an M2-Mφ inducer. Moreover, evidence also showed that the degradation of the TGF-β sequester, fibromodulin, was modulated by MMP8. The data indicate a previously unknown role of MMP8 in M2-Mφ polarization by cleaving fibromodulin and therefore increasing the bioavailability of the M2-Mφ inducer TGF-β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号